[논문] Machine learning-based risk factor analysis for periodontal disease from a Korean National Survey
Periodontal disease is a chronic but treatable condition which often does not cause pain during the initial stages of the illness. Lack of awareness of symptoms can delay initiation of treatment and worsen health. The aim of this study was to develop and compare different risk prediction models for periodontal disease using machine learning algorithms. We obtained information on risk factors for periodontal disease from the Korea National Health and Nutrition Examination Survey (KNHANES) dataset. Principal component analysis and an auto-encoder were used to extract data on risk factors for per ...